Genetic etiology study of the non-syndromic deafness in Chinese Hans by targeted next-generation sequencing

نویسندگان

  • Tao Yang
  • Xiaoming Wei
  • Yongchuan Chai
  • Lei Li
  • Hao Wu
چکیده

BACKGROUND Although over 60 non-syndromic deafness genes have been identified to date, the etiologic contribution of most deafness genes remained elusive. In this study, we addressed this issue by targeted next-generation sequencing of a large cohort of non-syndromic deaf probands. METHODS Probands with mutations in commonly screened deafness genes GJB2, SLC26A4 and MT-RNR1 were pre-excluded by Sanger sequencing. The remaining 125 deaf probands proceeded through targeted exon capturing of 79 known deafness genes and Illumina HiSeq2000 sequencing. RESULTS Bi-allelic mutations in 15 less commonly screened deafness genes were identified in 28 deaf probands, with mutations in MYO15A, GPR98, TMC1, USH2A and PCDH15 being relatively more frequent (≥3 probands each). Dominant mutations in MYO6, TECTA, POU4F3 and COCH were identified in 4 deaf families. A mitochondrial MTTS1 mutation was identified in one maternally inherited deaf family. No pathogenic mutations were identified in three dominant deaf families and two consanguineous families. CONCLUSIONS Mutations in the less commonly screened deafness genes were heterogeneous and contributed to a significant percentage (17.4%) of causes for non-syndromic deafness. Targeted next-generation sequencing provided a comprehensive and efficient diagnosis for known deafness genes. Complementary to linkage analysis or whole-exome sequencing of deaf families, pre-exclusion of known deafness genes by this strategy may facilitate the discovery of novel deafness genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic etiology of Asthenozoospermia: A review

Background: Asthenozoospermia, as the most prevalent cause of male infertility, is defined as low percentage of progressively motile spermatozoa per ejaculate. It occurs in both non-syndromic and syndromic forms and later it manifests as a part of primary ciliary dyskinesia. In the last decade, with the advent of Next-generation sequencing technologies numerous genes have been introduced in the...

متن کامل

Targeted Next-Generation Sequencing in Uyghur Families with Non-Syndromic Sensorineural Hearing Loss

The mutation spectrum of deafness genes may vary in different ethnical groups. In this study, we investigated the genetic etiology of nonsyndromic deafness in four consanguineous and two multiplex Uyghur families in which mutations in common deafness genes GJB2, SLC26A4 and MT-RNR1 were excluded. Targeted next-generation sequencing of 97 deafness genes was performed in the probands of each fami...

متن کامل

The first case of NSHL by direct impression on EYA1 gene and identification of one novel mutation in MYO7A in the Iranian families

Objective(s): Targeted next-generation sequencing (NGS) provides a consequential opportunity to elucidate genetic factors in known diseases, particularly in profoundly heterogeneous disorders such as non-syndromic hearing loss (NSHL). Hearing impairments could be classified into syndromic and non-syndromic types. This study intended to assess the significance of mutations in these genes to the ...

متن کامل

Implementation and Optimization of Annotation and Interpretation Step of Next-Generation Sequencing Data for Non-Syndromic Autosomal Recessive Hearing Loss

Introduction: The precision and time required for analysis of data in next-generation sequencing (NGS) depends on many factors including the tools utilized for alignment, variant calling, annotation and filtering of variants, personnel expertise in data analysis and interpretation, and computational capacity of the lab and its optimization is a challenging task.  Method: An application software...

متن کامل

Implementation and Optimization of Annotation and Interpretation Step of Next-Generation Sequencing Data for Non-Syndromic Autosomal Recessive Hearing Loss

Introduction: The precision and time required for analysis of data in next-generation sequencing (NGS) depends on many factors including the tools utilized for alignment, variant calling, annotation and filtering of variants, personnel expertise in data analysis and interpretation, and computational capacity of the lab and its optimization is a challenging task.  Method: An application software...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013